The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN
نویسندگان
چکیده
The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients.
منابع مشابه
The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma.
UNLABELLED Neuroblastomas harboring activating point mutations in anaplastic lymphoma kinase (ALK) are differentially sensitive to the ALK inhibitor crizotinib, with certain mutations conferring intrinsic crizotinib resistance. To overcome this clinical obstacle, our goal was to identify inhibitors with improved potency that can target intractable ALK variants such as F1174L. We find that PF-06...
متن کاملErk5 Is a Potential Therapeutic Target in Alk-positive Neuroblastoma
Anaplastic lymphoma kinase (ALK) has been implicated as an oncogenic driver in pediatric neuroblastoma and is frequently activated by amplifi cation and gain-of-function mutations. However, results from phase I trials have suggested that, in contrast to other tumor types such as non–small cell lung cancer, single-agent therapy with the ALK inhibitor crizotinib is not effective in pediatric pati...
متن کاملPF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models.
We report the preclinical evaluation of PF-06463922, a potent and brain-penetrant ALK/ROS1 inhibitor. Compared with other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK-driven brain metastases, leading to...
متن کاملMolecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma
Mutations in the ALK tyrosine kinase receptor gene represent important therapeutic targets in neuroblastoma, yet their clinical translation has been challenging. The ALK(F1174L) mutation is sensitive to the ALK inhibitor crizotinib only at high doses and mediates acquired resistance to crizotinib in ALK-translocated cancers. We have shown that the combination of crizotinib and an inhibitor of d...
متن کاملTargeting ALK: The Ten Lives of a Tumor.
In this issue, Infarinato and colleagues report the results of preclinical testing of a novel ALK/ROS1 inhibitor, PF-06463922, in neuroblastoma. This small-molecule inhibitor was shown to efficiently inhibit the growth of patient-derived and established neuroblastoma xenograft models expressing mutated ALK. Although the in vivo data are impressive and the authors suggest that clinical trials ar...
متن کامل